Los Alamos National Laboratory
Lab Home  |  Phone
 
 
Quantum Institute : 2015 Quantum Lunch Seminar Schedule

CONTACTS

  • Coordinator
    Sebastian Deffner
  • Quantum Lunch Location:
    T-Division Conference Room, TA-3,
    Building 123, Room 121





Quantum Institute: Visitor Schedule

The Quantum Lunch is regularly held on Thursdays in the Theoretical Division Conference Room, TA-3, Building 123, Room 121.

The organizing committee includes Malcolm Boshier (P-21), Diego Dalvit (T-4), Michael Di Rosa (C-PCS), Sebastian Deffner (T-4 & CNLS), Changhyun Ryu (P-21) , Nikolai Sinitsyn (T-4), Rolando Somma (T-4), Christopher Ticknor (T-1), and Wojciech Zurek (T-4).

For more information, or to nominate a speaker, contact Sebastian Deffner.

To add your name to the Quantum Lunch email list, contact Ellie Vigil.

Thursday May 7, 2015
12:30 PM - 2:00 PM

Speaker: Marcos Rigol (Pennsylvania State University)

Technical Host: Sebastian Deffner

TOPIC: From unitary dynamics to statistical mechanics in isolated quantum systems

Abstract
Recently, experiments with ultracold gases have made it possible to study dynamics of (nearly) isolated many-body quantum systems. This has revived theoretical interest on this subject. In generic isolated systems, one expects nonequilibrium dynamics to result in thermalization: a relaxation to states where the values of macroscopic quantities are stationary, universal with respect to widely differing initial conditions, and predictable through the time-tested recipe of statistical mechanics. However, it is not obvious what feature of a many-body system makes quantum thermalization possible, in a sense analogous to that in which dynamical chaos makes classical thermalization possible. Underscoring that new rules could apply in the quantum case, experimental studies in one-dimensional systems have shown that statistical mechanics can provide wrong predictions for the outcomes of relaxation dynamics. Analyzing specific examples, we argue that generic isolated quantum systems do in fact relax to states in which observables are well-described by statistical mechanical [1,2]. Moreover, we show that time evolution itself plays a merely auxiliary role as thermalization happens at the level of individual eigenstates. We also discuss what happens at integrability points, where a different set of rules apply [3,4].

References:
[1] M. Rigol, V. Dunjko, and M. Olshanii. Thermalization and its mechanism for generic isolated quantum systems. Nature 452, 854 (2008).
[2] M. Rigol, Breakdown of Thermalization in Finite One-Dimensional Systems, Phys. Rev. Lett. 103, 100403 (2009)
[3] M. Rigol, V. Dunjko, V. Yurovsky, and M. Olshanii. Relaxation in a Completely Integrable Many-Body Quantum System: An Ab Initio Study of the Dynamics of the Highly Excited States of 1D Lattice Hard-Core Bosons. Phys. Rev. Lett. 98, 050405 (2007).
[4] A. C. Cassidy, C. W. Clark, and M. Rigol. Generalized Thermalization in an Integrable Lattice System. Phys. Rev. Lett. 106, 140405 (2011).

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy's NNSA

Inside | © Copyright 2007-8 Los Alamos National Security, LLC All rights reserved | Disclaimer/Privacy | Web Contact