Los Alamos National Laboratory
Lab Home  |  Phone
 
 
Quantum Institute : 2014 Quantum Lunch Seminar Schedule

CONTACTS

  • Coordinator
    Adolfo del Campo
  • Quantum Lunch Location:
    T-Division Conference Room, TA-3,
    Building 123, Room 121





Quantum Institute: Visitor Schedule

The Quantum Lunch is regularly held on Thursdays in the Theoretical Division Conference Room, TA-3, Building 123, Room 121.

The organizing committee includes Malcolm Boshier (P-21), Adolfo del Campo (T-4 & CNLS), Michael Di Rosa (C-PCS), Armin Rahmanisisan (T-4 & CNLS), Changhyun Ryu (P-21) , Nikolai Sinitsyn (T-4), Rolando Somma (T-4), Christopher Ticknor (T-1), and Wojciech Zurek (T-4).

For more information, or to nominate a speaker, contact Adolfo del Campo.

To add your name to the Quantum Lunch email list, contact Ellie Vigil.

Please note that this special Quantum Lunch will be held in the Challenge Room (TA-3, Bldg. 200, Room 264).

Monday March 10, 2014
12:30 PM - 2:00 PM

Speaker: Gabriele Ferrari (University of Trento)

Technical Host: Adolfo del Campo

TOPIC: Spontaneous creation of Kibble-Zurek solitons in a Bose-Einstein condensate

Abstract
The Kibble-Zurek mechanism (KZM) describes the spontaneous formation of defects in systems that cross a second-order phase transition at a finite rate. The mechanism was first proposed in the context of cosmology to explain how, during the expansion of the early Universe, the rapid cooling below a critical temperature induced a cosmological phase transition resulting in the creation of domain structures. In fact, the KZM is ubiquitous in nature and regards both classical and quantum phase transitions. Experimental evidences have been observed in superfluid $^3$He, in superconducting films and rings and in ion chains. Bose-Einstein condensation in trapped dilute gases has been considered as an ideal platform for the KZM as the system is extremely clean, controllable and particularly suitable for the investigation of effects arising from the spatial inhomogeneities induced by the confinement. Quantized vortices produced in a pancake-shaped condensate by a fast quench across the transition temperature have been already observed, but their limited statistics prevented a test of the KZM scaling. The KZM has been studied across the quantum superfluid to Mott insulator transition with atomic gases trapped in optical lattices. Here we report on the observation of solitons resulting from phase defects of the order parameter, spontaneously created in an elongated Bose-Einstein condensate of sodium atoms. We show that the number of solitons in the final condensate grows according to a power-law as a function of the rate at which the transition is crossed, consistent with the expectations of the KZM, and provide the first indication of the KZM scaling with the sonic horizon. We support our observations by comparing the estimated speed of the transition front in the gas to the speed of the sonic causal horizon, showing that solitons are produced in a regime of inhomogeneous Kibble-Zurek mechanism. We will address the role of the creation of vortices in our measurements.

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy's NNSA

Inside | © Copyright 2007-8 Los Alamos National Security, LLC All rights reserved | Disclaimer/Privacy | Web Contact